Engineering Cell Fate: The Roles of iPSC Transcription Factors, Chemicals, Barriers and Enhancing Factors in Reprogramming and Transdifferentiation
نویسنده
چکیده
Direct reprogramming technology has emerged as an outstanding technique for the generation of induced pluripotent stem (iPS) cells and various specialized cells directly from somatic cells of different species. Recent studies dissecting the molecular mechanisms of reprogramming have methodologically improved the quality, ease and efficiency of reprogramming and eliminated the need for genome modifications with integrating viral vectors. With these advancements, direct reprogramming technology has moved closer to clinical application. Here, we provide a comprehensive overview of the cutting-edge findings regarding distinct barriers of reprogramming to pluripotency, strategies to enhance reprogramming efficiency, and chemical reprogramming as one of the non-integrating approaches in iPS cell generation. In addition to direct transdifferentiation, pluripotency factor-induced transdifferentiation or cell activation and signaling directed (CASD) lineage conversion is described as a robust strategy for the generation of both tissue-specific progenitors and clinically relevant cell types. Then, we consider the possibility that a combined method of inhibition of roadblocks (e.g. p53, p21, p57, Mbd3, etc.), and application of enhancing factors in a chemical reprogramming paradigm would be an almost safe, reliable and effective approach in pluripotent reprogramming and transdifferentiation. Furthermore, with respect to the state of native, aberrant, and target gene regulatory networks in reprogrammed cell populations, CellNet is reviewed as a computational platform capable of evaluating the fidelity of reprogramming methods and refining current engineering strategies. Ultimately, we conclude that a faithful, highly efficient and integration-free reprogramming paradigm would provide powerful tools for research studies, drug-based induced regeneration, cell transplantation therapies and other regenerative medicine purposes.
منابع مشابه
Mesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملSmall molecules, big roles -- the chemical manipulation of stem cell fate and somatic cell reprogramming.
Despite the great potential of stem cells for basic research and clinical applications, obstacles - such as their scarce availability and difficulty in controlling their fate - need to be addressed to fully realize their potential. Recent achievements of cellular reprogramming have enabled the generation of induced pluripotent stem cells (iPSCs) or other lineage-committed cells from more access...
متن کاملProgress in the reprogramming of somatic cells.
Pluripotent stem cells can differentiate into nearly all types of cells in the body. This unique potential provides significant promise for cell-based therapies to restore tissues or organs destroyed by injuries, degenerative diseases, aging, or cancer. The discovery of induced pluripotent stem cell (iPSC) technology offers a possible strategy to generate patient-specific pluripotent stem cells...
متن کاملI-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction
Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...
متن کاملChemicals as the Sole Transformers of Cell Fate
Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of gov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015